
Effective refinements of classical theorems in
descriptive set theory

Vassilis Gregoriades (ongoing work with Y.N. Moschovakis)

TU Darmstadt

8th of July 2013, Nancy France

V.G. (TU Darmstadt) Effective Refinements 1 / 15



Recursive Polish spaces

A Polish space is a topological space which is separable and
metrizable by a complete distance function.
For the remaining of this talk we fix a recursive enumeration (qk )k∈ω of
the set of all rational numbers.

Definition
Suppose that (X ,d) is a separable complete metric space. A
recursive presentation of (X ,d) is a function r : ω → X such that

1 the set {rn | n ∈ ω} is dense in X ,
2 the relations P<,P≤ ⊆ ω3 defined by

P<(i , j , s) ⇐⇒ d(ri , rj) < qs

P≤(i , j , s) ⇐⇒ d(ri , rj) ≤ qs

are recursive.
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Definition (continued)
A separable complete metric space (X ,d) is recursively presented if
it admits a recursive presentation.

A Polish space X is a recursive Polish space if there exists a pair
(d , r) as above.
We encode the set of all finite sequences of naturals by a natural in a
recursive way and we denote the corresponding set by Seq.

V.G. (TU Darmstadt) Effective Refinements 3 / 15



Definition (continued)
A separable complete metric space (X ,d) is recursively presented if
it admits a recursive presentation.
A Polish space X is a recursive Polish space if there exists a pair
(d , r) as above.

We encode the set of all finite sequences of naturals by a natural in a
recursive way and we denote the corresponding set by Seq.

V.G. (TU Darmstadt) Effective Refinements 3 / 15



Definition (continued)
A separable complete metric space (X ,d) is recursively presented if
it admits a recursive presentation.
A Polish space X is a recursive Polish space if there exists a pair
(d , r) as above.
We encode the set of all finite sequences of naturals by a natural in a
recursive way and we denote the corresponding set by Seq.

V.G. (TU Darmstadt) Effective Refinements 3 / 15



Two classical results

Theorem (Well-known)
1 Every Polish space is the continuous image of the Baire space
N = ωω though an open mapping.

2 Every zero-dimensional Polish space is homeomorphic to a
closed subset of N .
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Suslin schemes
Definition
A Suslin scheme on a Polish space X is a family (As)s∈Seq of subsets
of X indexed by Seq.
We say that (As)s∈Seq is of vanishing diameter if for all α ∈ N we
have that

lim
n→∞

diam(Aα(n)) = 0,

for some compatible distance function d , where α(n) is the code of the
finite sequence (α(0), . . . , α(n − 1)).

For every Suslin scheme (As)s∈Seq on a Polish space X of vanishing
diameter we assign the set

D = {α ∈ N | ∩n∈ωAα(n) 6= ∅}.

Since the Suslin scheme is of vanishing diameter the intersection
∩n∈ωAα(n) is at most a singleton.
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Definition
We define the partial function f : N ⇀ X by

f (α) ↓ ⇐⇒ α ∈ D
f (α) ↓ =⇒ f (α) = the unique x ∈ ∩n∈ωAα(n).

The preceding function f is the associated map of the Suslin scheme
(As)s∈Seq.

Definition
A Suslin scheme (As)s∈Seq is semirecursive (recursive) if the set
A ⊆ Seq×X defined by A(s, x) ⇐⇒ x ∈ As, (so that the s-section of
A is exactly the set As) is semirecursive (recursive).

We notice that semirecursive Suslin schemes consist of open sets and
that recursive Suslin schemes consist of clopen sets.
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Lusin schemes

Definition
A Lusin scheme on a Polish space X is a Suslin scheme (As)s∈Seq
with the properties

1 Asˆ i ∩ Asˆ j = ∅ for all s ∈ Seq and i 6= j , and
2 Asˆ i ⊆ As for all s ∈ Seq and i ∈ ω.

The notions of “vanishing diameter", “associated map" and “being
semirecursive/recursive" apply also to Lusin schemes in the obvious
way.
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Theorem (Well-known)
Suppose that (As)s∈Seq is a Suslin scheme on a Polish space X of
vanishing diameter.

Then
1 the associated map f : D → X is continuous,
2 if every As is open and As ⊆ ∪iAsˆ i then f is open,
3 if (As)s∈Seq is a Lusin scheme and every As is open then f is a

homeomorphism between D and f [D],
4 if (As)s∈Seq is a Lusin scheme and every As is closed then D is

closed as well.
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Lemma
Suppose that X is recursive Polish space and that (As)s∈Seq is a
semirecusive Suslin scheme with associated map the function f and
diam(As) < 2−lh(s) for all s ∈ Seq for some compatible pair (d , r).
Then the partial function

f : N ⇀ X

is recursive on its domain.

If moreover the family (As)s∈Seq is a Lusin scheme then the inverse
partial function

f−1 : X ⇀ N

is recursive on its domain as well.
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Lemma
For every recursive Polish space X and every compatible pair (d , r)
there exists a semirecursive Suslin scheme (As)s∈Seq with the following
properties.

1 Every As is non-empty,
2 diam(As) < 2−lh(s) for all s ∈ Seq,
3 A0 = X ,
4 As = ∪i∈ωAsˆ i = ∪i∈ωAsˆ i .

Basic tool for the proof.

There exists a recursive set I ⊆ ω5 such that for all (n, i , k) ∈ ω3 we
have

B(ri ,qk ) =
⋃

(j,m)∈I(n,i,k)

B(rj ,qm) =
⋃

(j,m)∈I(n,i,k)

B(rj ,qm)

and diamB(rj ,qm) ≤ 2−n+1 for all (j ,m) ∈ I(n,i,k). a
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Theorem
For every recursive Polish space X there exists a recursive surjection

π : N � X

which is also an open mapping.

Sketch of the proof.
We consider the semirecursive Suslin scheme (As)s∈Seq of the
preceding Lemma. The associated map f is a total, surjective and
recursive. Moreover since every As is open and As ⊆ ∪iAsˆ i for all s, i
it follows that f is open. a
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Definition
A recursive Polish space X is recursively zero-dimensional if there
exists a compatible pair (d , r) such that the relation I ⊆ X × ω × ω
defined by

I(x , i , s) ⇐⇒ d(x , ri) < qs

is recursive.

Lemma
For every recursively zero-dimensional Polish space X and every
compatible pair (d , r) for X there exists a recursive Lusin scheme
(As)s∈Seq with the following properties.

1 A0 = X ,
2 As = ∪iAsˆ i and
3 diam(As) < 2−lh(s)

for all s ∈ Seq and all i ∈ ω.
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Theorem
For every recursively zero-dimensional Polish space X there exists a
recursive injection g : X � N such that the set g[X ] is Π0

1(ε) for some
ε ∈ ∆0

2.
Moreover the inverse function g−1 : g[X ]�→X is computed by a
semirecursive subset of N × ω2 on Y. In particular the inverse function
g−1 is continuous.

Sketch of the proof.
We consider the recursive Lusin scheme (As)s∈Seq of the preceding
Lemma and its associated map f : D → X . Then f is continuous and
bijective. We take g = f−1 : X � D. The set D is closed (see
preceding slides) and in fact it is Π0

1(ε) for some ε ∈ ∆0
2. a
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Why the oracle ε?

It holds that g[X ] = D and

α ∈ D ⇐⇒ (∀n)[Aα(n) 6= ∅].

We define ε(s) = 1 exactly when there exists i such that ri ∈ As and 0
otherwise, so that

α ∈ g[X ]⇐⇒ (∀n)[ε(α(n)) = 1].

The preceding constructions of Suslin and Lusin schemes make
substantial use of

Theorem (Kleene’s Recursion Theorem)
For every partial function f : ω ⇀ ω, which is recursive on its domain,
there exists some e∗ such that for all n ∈ Domain(f )

{e∗}(n) ↓ and f (n) = {e∗}(n).
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Thank you for your attention!
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